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Introduction: Korean Labor Force Survey (KLFS)

Household survey (157,205 sample households)
Universe=employed+unemployed+not in LF

Face-to-face survey with 3 followups

We still have nonresponse (9.8%) after 3 followups.

Table: 2009 KLFS data

Status First Second Third Fourth No response

Employment 81,685 46,926 28,124 15,992
Unemployment 1,509 948 597 352 32,350

Not in LF 57,882 32,308 19,086 10,790

Unemp. rate 1.81% 1.98% 2.08% 2.15%
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Introduction: KLFS (Continued)

From KLFS,

Followups are helpful to reduce nonresponse rate (57.0%→ 9.8%).

But we still have some nonresponses after the final contact attempt.

Unempolyment rate increases as the contact attempt increase, which
suggests for nonignorable nonresponse.

Nonignorable nonresponse can be adjusted by using the contact
information data as paradata.
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Introduction: Paradata and Contact data

-Paradata

Data about the survey process as by-product.

Originally conceptualized as the data automatically generated as the
by product of computer-assisted survey method (Couper, 1998).

Applied to telephone surveys (call records) and mail surveys (stamps).

Expanded to include data collection process and response process.

Couper and Lyberg (2005), Scheuren (2005), O’Reilly (2009) and
Kreuter (2010).

-Contact data

Call records data: the time of contact (day and time), the number of
contacts, callbacks or followups

Interviewer observations data: attitude for interview
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Introduction: Contact data and nonreponse error

- Adjusting of nonignorable nonresponse error with contact information

Later respondents are more similar to nonrespondents than early
respondents.
Ex) Drew and Fuller (1980), Alho (1990), Potthoff et al. (1993) and
Biemer et al. (2012)

Classification of interviewees based on “attitude for interview” can be
used to account response propensity.
EX) Peress (2010)
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Methods

- Our goal is to correct for nonignorable nonresponse bias with followups.

Two existing methods

Drew and Fuller (1980): works for categorical data.
Alho (1990): Conditional likelihood approach

New approach

Calibration weighting method with the same conditional response
probability of Alho (1990).
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Methods: Drew and Fuller (1980)’s method

Multinomial Likelihood with categorical data

T ×K contigency table + one nonresponse category

Hardcore nonresponse

l(π11, · · · , πTK , π0) =

T∑
t=1

K∑
k=1

ntk log πtk + n0 log π0

where

πtk = γ(1− qk)t−1qkfk for t = 1, · · · , T and k = 1, · · · ,K.

π0 = (1− γ) + γ
∑K

k=1(1− qk)T fk
fk: population proportion for category k (0 < fk < 1)

qk: the condtional response probability that the unit in category k
responds when the unit is sampled

1− γ: fraction of hardcore nonresponse
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Proposed method
Drew and Fuller(1980)’s method (Continued)

Contigency table with T=4 and K=3

status First Second Third Fourth No response

k=1 n11(π11) n21(π21) n31(π31) n41(π41)
k=2 n12(π12) n22(π22) n32(π32) n42(π42) n0(π0)
k=3 n13(π13) n23(π23) n33(π33) n43(π43)

Decomposed No responce cell

No response
No response non hardcore hardcore

n0 n01 n02

Note that n02 = n× (1− γ).
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Methods: Basic setup

A: original sample set of size n

T: total number of trials (First trial and T-1 follow-ups)

A1: set of initial respondents

At: set of respondents at (t-1) followups t = 2, · · · , T

A1 ⊂ · · · ⊂ AT ⊂ A

Response indicator function δit

δit =

{
1 if i ∈ At;
0 o/w.

0 ≤ δi1 ≤ · · · ≤ δiT ≤ 1

δiT is a indicator of reponse/nonresponse in survey.
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Methods: Basic setup (Cont’d)

Assume logistic conditional response probability

pit ≡ P (δit = 1 | δi,t−1 = 0, yi) =
exp(αt + φyi)

1 + exp(αt + φyi)
(1)

for t = 1, · · · , T with δi0 = 0.

Alho (1990) considered maximizing conditional likelihood:

Lc(α, φ) =
∏
δiT=1

T∏
t=1

P (δit = 1|yi, δi,t−1 = 0, δiT = 1)δit−δi,t−1

=
∏
δiT=1

T∏
t=1

(
πit∑T
t=1 πit

)δit−δi,t−1

where πit = pit
∏t−1
k=1(1− pik).
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Methods: Calibration weighting method

Our goal is to estimate (α̂, φ̂) of the conditional probability in (1).

We will use some calibration equations to estimate parameters rather
than maximizing conditional likelihood.

First consider the case of T=2. From the set of respondents A1 and A2,
we have

E

{∑
i∈A

di
δi1
pi1

(1, yi)

}
= (N,Y ) (2)

E

{∑
i∈A

diδi1(1, yi) +
∑
i∈A

di
(1− δi1)δi2

pi2
(1, yi)

}
= (N,Y ). (3)

Note that E [δit | δi,t−1, yi] = pit by the construction of pit.
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Methods
Calibration weighting method (Continued)

Combining (2) and (3),∑
i∈A

di
δi1
pi1

(1, yi) =
∑
i∈A

diδi1(1, yi) +
∑
i∈A

di
(1− δi1)δi2

pi2
(1, yi)

Writing again with conditional response model in (1),∑
i∈A

diδi1 {1 + exp(−α1 − φyi)} (1, yi)

=
∑
i∈A

diδi1(1, yi) +
∑
i∈A

di(1− δi1)δi2 {1 + exp(−α2 − φyi)} (1, yi)

Also, add ∑
i∈A

diδi1 {1 + exp(−α1 − φyi)} =
∑
i∈A

di.

We have 3 equations with 3 parameters. Uniquely determine (α̂1, α̂2, φ̂).
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Methods: Calibration weighting method

Now consider the case of T ≥ 2. Given sampling weight di, we have∑
i∈A

diδi,t−1(1, yi) +
∑
i∈A

di(1− δi,t−1)
δit
pit

(1, yi) = (N,Y ) (4)

where t = 1, · · · , T and ∑
i∈A

di = N (5)

where N is the population size and Y =
∑N

i=1 yi.

We have T + 2p+ 1 parameters with (p+ 1)× T + 1 equations,
where p = dim(y).

May use GMM (Generalized method of moment) idea for parameter
estimation.
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Methods
Calibration weighting method (Continued)

Writing η = (α1, · · · , αT , φ, Y ), the GMM estimates η̂ can be obtained by
minimizing

Q = ÛT (η)
[
V̂
{
Û(η)

}]−1
Û(η)

where Û(η) is the system of estimating equations in (4) and (5) and

V̂
{
Û(η)

}
is a design-consistent variance estimator of Û(η) for fixed value

of η.
Also the GMM estimator of η has asymptotic variance estimated by

V̂ (η̂) =

{
τ̂
[
V̂
{
Û(η̂)

}]−1
τ̂T
}−1

where τ̂ = ∂Û(η̂)/∂ηT .
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Simulation: Estimators

-Four estimators of µy,

Full: full sample estimator assuming no nonresponse.

Alho: Alho’s estimator.

CAL: Calibration estimator

CK: Chang and Kott (2008)’s estimator obtained without use of
followups information.

ŶCK =
1

n

∑
i∈A diδiT yi/π̂i∑
i∈A diδiT /π̂i

where π̂ is obtained by solving∑
i∈A

di (δiT /πi − 1) (1, xi) = 0

wherexi is an instrumental variable in πi = {1 + exp(−α∗+ φ∗yi)}−1.
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Simulation: Setup

Given two simulation data sets,

Case 1: yi = 0.5xi + ei (Linear model)

Case 2: yi = 0.5x2i + ei (Quadratic model)

where xi ∼ N(1, 1) and ei ∼ N(0, 1/2).
We assume two conditional response models with one followup (T=2),

Model 1: Logistic model

pit = {1 + exp(−αt + φyi)}−1

with (α1, α2, φ) = (−1, .5, 1).

Model 2: Beta model

pit =
Γ(αt+1 + φ)

Γ(αt+1)Γ(φ)
z
αt+1−1
i (1− zi)φ−1,

with (α1, α2, φ) = (1, .5, 3) and zi = y2i /(1 + y2i ).
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Simulation: Results

Table: Monte Carlo biases, variances, and mean squared errors (MSE) of the
point estimates (under model 1)

Case Estimator Bias Variance MSE

Full 0.0002 0.0020 0.0020
Case 1 Alho 0.0016 0.0033 0.0033

(Linear) CK -0.0022 0.0034 0.0034
CAL 0.0084 0.0029 0.0030

Full 0.0018 0.0025 0.0025
Case 2 Alho 0.0025 0.0034 0.0034

(Quadratic) CK 0.2148 0.4701 0.5162
CAL -0.0003 0.0048 0.0048

Calibration method estimates are comprable to those of Alho’s
method in both cases: linear and quadratic.

Chang and Kott (2008) estimator does not work in quadratic case.
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Simulation: Results (Continued)

Table: Monte Carlo biases, variances, and mean squared errors (MSE) of the
point estimates under model 2 (Case 1)

Estimator Bias Variance MSE

Full 0.0015 0.0020 0.0020
Alho -0.1492 0.0030 0.0252
CK -0.0008 0.0031 0.0031

CAL 0.0020 0.0023 0.0023

We used the Beta response model as true model and the Logistic
response model as working model.

Alho’s method is not robust because it is based on maximum
likelihood approach.
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Application: KLFS

Assume that the conditional response model is

pit ≡ P (δit = 1 | δi,t−1, yi) = {1 + exp(αt + φyi)}−1

where yi is the number of unemployment family member in ith household.

θ1 and θ2 are the fraction of employment and unemploymet with
respect to population total, respectively.

(θ̂1, θ̂2) =
1

328, 549

157,205∑
i=1

di
δi1
pi1

(xi, yi)

where xi is the number of employment family member in ith
household.

The unemployment rate is defined by θ2/(θ1 + θ2).
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Application: KLFS
KLFS estimates

Table: Estimated parameters for labor force in Korean LALF

Parameter Method Estimates S.E(×10−4)

Naive 0.5831 11.05
θ1 Alho 0.5830 10.94

Drew & Fuller 0.5847 10.90
Calibration 0.5835 11.05

Naive 0.0115 2.00
θ2 Alho 0.0119 2.56

Drew & Fuller 0.0119 2.46
Calibration 0.0119 2.32

Variance of Alho’s estimator and Drew and Fuller’s estimator are
computed by the Jackknife method.

21 / 23



Discussion

Motivated from a real survey problem.

Contact information (ex.followups) as paradata can be used to reduce
non-ignorable nonresponse error

We proposed the calibration weighting method (or GMM) using the
moment conditions obtained from conditional response model.

In the simulation study, our proposed method shows robustness
without losing the efficiency much.

Variance estimation relatively easy (because it is a direct application
of the GMM)
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Thank you for your attention
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